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Abstract— Soft robotics, driven by material and design advance-
ments, presents challenges for visualization and simulation due to its
complex deformations. This paper proposes a digital twin (DT) system
for reconfigurable soft robots in augmented reality (AR) environments.
Leveraging parameterized curve-driven methods, the system enables
dynamic modification of digital twins, accurately representing defor-
mations. Three primary deformation patterns are identified, and sensor
fusion captures real-time structural changes. Implemented within an
AR environment, the system allows immersive inspection and simulation
of soft robots. A case study validates its effectiveness.
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I. INTRODUCTION

Soft robotics represents a burgeoning domain characterized by
the utilization of pliable materials, where the locomotion of such
robots is predominantly achieved through the inherent elastic de-
formation of their structural makeup. Attributable to their intrinsic
properties, marked flexibility, substantial compliance, adaptability,
and enhanced safety during human-robot interactions, soft robots
have garnered escalating scholarly interest. They exhibit promising
applicative prospects across various sectors, including medical
instrumentation, wearable technology, and industrial systems [1].

The paradigm of reconfigurability has emerged as a salient
trend within contemporary industrial processes [2], advocating for
the segmentation of large and intricate products or systems into
smaller, modular, and manageable units. Diverging from their fixed-
morphology counterparts, reconfigurable soft robots (RSR) possess
the innate ability to conform to diverse environmental contexts and
task-specific requirements through the reorganization of their modu-
lar components. This capability facilitates advanced functionalities,
encompassing self-assembly, self-repair, and autonomous actuation.
RSR confers distinct advantages, including streamlined mainte-
nance, customizable configurations, scalability for mass production,
and enhanced reusability. Current research trajectories in the field
of RSR are chiefly concentrated on the development of modular
unit design, simulation methodologies, manufacturing techniques,
connective mechanics, sensor integration, and control strategies. A
spectrum of reconfigurable soft robot prototypes has been realized,
ranging from soft modular constructs akin to LEGO [3], chiral-
lattice structures adaptable for locomotion [4], spherical RSR [5],
flexible robotic arms [6], to origami-inspired RSR configurations
[7]. Despite the proliferation of exploratory endeavors in the realm
of RSR, the establishment of systematic theoretical frameworks for
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their design and operationalization remains nascent. Predominantly,
extant designs have been directed toward practical applications with
a paucity of advanced visualization and simulation techniques.

Digital twins, virtual avatars of physical entities, are an avant-
garde technology within contemporary industrial landscapes, of-
fering two primary capabilities: visualization and simulation in
practical application[8], [9]. Nonetheless, the application of these
functionalities to soft robotics is problematic due to their intrinsic
and pronounced deformability. Yang et al. [10] proposed a virtual
work-based static model to describe the mechanics of continuum
robots with rod-driven structures, accounting for geometric con-
straints of the drive rods. To precisely capture the complex deforma-
tions characteristic of soft robots, the integration of bending sensors
has proven indispensable. These sensors facilitate the acquisition
of real-time deformation data, thereby enhancing the fidelity of
the robot’s digital counterpart. Koivikko et al. [11] devised stretch-
able pneumatic strain gauges tailored for soft robotic applications,
whereas Wang et al. [12] developed a highly elastic hydrogel sensor
that adeptly monitors multi-modal interactions, including bending,
twisting, and force detection, with remarkable sensitivity in soft
robotic fingers. Furthermore, White et al.[13] introduced a multi-
element strain gauge module for soft sensory skins, equipped with a
trio of resistive gauges to amass comprehensive geometric data. In
a synergistic fusion with augmented reality (AR), DT can offer
real-time informational overlays, facilitating a more naturalistic
and intuitive interface for human-robot interaction, thus forging an
immersive experiential nexus within the realm of RSR. Drawing
upon sensorized soft bending robot, Borges et al. [14] put forth a
conceptual framework for shape reconstruction within the context
of extended reality. This integration of bending sensors within a DT
enables the generation of a real-time portrayal of soft robots. How-
ever, most current representations are rudimentary proxies—such
as curves or planes—that fall short of mirroring the true three-
dimensional deformed structures. Concerning the simulation aspect,
research efforts directed at configuration simulation are scarce,
and even more so when considering the confluence with human
operators. Presently, the RSR domain is bereft of a robust and
accurate visualization and simulation platform, an instrumental tool
for advancing the field.

Here, we introduce an innovative methodology for the synthesis
of a digital twin tailored to a reconfigurable soft robot through
the implementation of augmented reality (AR) technology. Our
proposed system facilitates the instantaneous and uninterrupted de-
piction of the robot’s deformation within an AR milieu, empowering
users to adjust the configuration of the soft modular components.
Additionally, it provides the capability to simulate these alterations
in AR to accommodate a diverse array of functional task demands.
The structure of the rest paper is arranged as follows: Section 2
delineates the DT framework alongside the pertinent theoretical
underpinnings expounded in Section 3. Section 4 delineates a
practical case study, culminating in Section 5, which synthesizes
key insights and noteworthy conclusions derived from our study.



II. THE FRAMEWORKS OF DIGITAL TWIN SYSTEM

The framework of the DT system for RSR is designed to offer
a user-friendly platform that facilitates seamless visualization and
interaction. This allows users to accurately perceive the deformation
of RSR, as well as simulate its configuration with intuitive interac-
tion. The framework consists of three primary components: modular
design and fabrication, parametric curve-based visualization and
control, and sensor fusion, as depicted in Fig.1.

Fig. 1. The framework of the AR-enhanced digital twin system for
reconfigurable soft robots.

The project utilizes a modular design for reconfigurable robots,
allowing easy adaptation to tasks through interchangeable mod-
ules enabling stretching, bending, and twisting. Parametric curve-
based visualization within an AR environment facilitates continuous
deformation exploration, enhancing user interaction by simulating
various configurations virtually. Sensor fusion, employing low-cost
strain gauge sensors, reconstructs real-time deformation, mapping it
to parametric curves for accurate real-world movement simulation
in the AR environment. This approach provides precise control
for the DT robots, ensuring seamless and accurate movement in
response to environmental changes or user input.

AR allows for the seamless embedding of digital elements into
the real world, enhancing the user’s perception. In this context, the
DT system operates alongside the real environment, utilizing AR to
simulate various configurations within the user’s actual surround-
ings. This integration enables a more immersive experience, where
the digital and physical worlds interact seamlessly.

III. METHODOLOGY

A. Modular Design and Fabrication for Three Primary Patterns

The tripartite modular design is derived from the fundamental
motion patterns observed in conventional soft robot designs. This
design approach employs additive manufacturing and molding tech-
niques to effectively fabricate the final product. The stretch module
is inspired by the folding zones of Chinese lanterns, allowing
for longitudinal stretching. The twisting module incorporates a
propeller-like structure consisting of two parallel square plates
connected by four twisted blades. By directing airflow through the
chamber, an unbalanced force distribution is created, resulting in
twisting deformation. Conversely, the bending module utilizes a
chamber with a wider upper section and a narrower lower section
to induce bending deformation. These three modules, as illustrated

in Figure 2, collectively contribute to the overall functionality of
the tripartite modular design. More design and fabrication details
can be referred to the previous works [15], [16]. For convenience
assembly and disassembly, the magnet connection is utilized.

Fig. 2. The structure design of three basic soft modules.

B. Parametric Curve-based Visualization and Control

The concept of parametric curve-based visualization and control
has been utilized in this approach, with a specific emphasis on the
Bezier curve model. This model consists of n control points and
plays a crucial role in determining the deformation patterns of the
robot. The curve is comprised of several bones that are distributed
along its points, which define the location and orientation of the
robot’s modules.

The bone functionality in Blender serves as a crucial component
in the rigging and animation process. It represents a joint or segment
within a skeletal structure and allows for the manipulation and
control of 3D models. By adding, editing, and positioning bones,
complex armatures can be created to accurately deform and animate
characters or objects. This capability is particularly useful when
working with soft robotic modules, where the bone framework can
be utilized to simulate the flexible and dynamic behavior of these
modules.

Fig. 3 illustrates the weight painting process applied to a bone,
revealing its impact on the deformation of the soft robot module.
This weight painting technique involves assigning distinct weights
to each vertex of the module, taking into consideration the distance.
The closer the vertex is to the bone, the higher the assigned
weight, which determines the extent to which the movement of
the associated bone affects that particular vertex.

Fig. 3. Weight paint of a bone on a soft robot module. The color-coded
weight distribution determines the influence of the bone on the deformation
of the module.

The bone-based model can be subsequently exported to Unity
for further development. By using Blender’s bone system, intri-
cate skeletal structures can be constructed to facilitate continuous



deformations of soft robots. This enables the user to establish
precise control over the model’s movements and expressions. Once
exported to Unity, the bone structure is attached to the control
point of the parametric Bezier curve. By manipulating the control
points, the parameterized curve is altered, and the corresponding
bones on the curve are also modified, ultimately resulting in
continuous deformation of the modules. The seamless integration of
bone functionality between Blender and Unity enhances the overall
workflow and facilitates the creation of visually compelling and
interactive 3D experiences.

The equation for the Bezier curve B(t) is:

B(t) =
n

∑
i=0

PiBn
i (t) (1)

where Pi are the position of control points, n is the degree of the
curve, and Bn

i (t) are the Bernstein basis polynomials defined as:

Bn
i (t) =

(
n
i

)
(1− t)n−it i (2)

where the parameter t is in the range [0,1].
The tangent vector at any given point on the curve is given by

its first derivative B′(t).

B′(t) = n
n−1

∑
i=0

(Pi+1 −Pi)Bn−1
i (t) (3)

where Pi are the control points, n is the degree of the curve, and
Bn−1

i (t) are the Bernstein basis polynomials defined as:

Bn−1
i (t) =

(
n−1

i

)
(1− t)n−1−it i (4)

Here, a variable PB = [PB0,PB1, ...,PBi, ...,PBm] is utilized to
represent the location of the chamber’s bone, where m is the number
of the bones, each PBi denotes the position of a bone on the Bezier
curve, represented as:

PBi = B(t), t = i/m (5)

For simplicity, the bones are arranged in equal distance. By
adjusting this variable PB, it is possible to drive the corresponding
part of the robot to deform as required, thereby enabling a high
degree of control over the robot’s configuration and movement
patterns.

For each bone on the curve, they are set to be vertical to the
curve. The normal vector is the vector perpendicular to this tangent
vector. In the 2D case, the normal vector N(t) can be easily
calculated by rotating the tangent vector by 90 degrees. Specifically,
if B′(t) = (x,y), then N(t) = (−y,x) or N(t) = (y,−x), depending on
the orientation. In the 3D case, there is no unique normal vector. For
3D curves, normal vectors are infinite in the normal plane. Thus, a
unique normal direction is defined by the tangent direction, which
is a 90◦ rotation around the x-axis. It is represented as:

N = R ·B′(t) (6)

where R is the rotation matrix. More motion transformation can
be referred to [17]. In the case of 3D curves, the determined
tangent line possesses two distinct directions. In order to maintain
a continuous deformation, it is necessary to impose constraints
on tangent directions, ensuring that the crossing angle between
adjacent tangent directions remains below 90◦.

Figure 4 illustrates the deformation that arises when altering
the positions of control points. This representation showcases the

Bezier curve, a space curve determined by the control points,
visually represented as the red line. Moreover, the control points
are visually denoted by green cubes. Additionally, the blue arrows
serve to indicate the orientation of the bone, which is positioned
orthogonally to the Bezier curve. The cubes, which represent
the positions of the control points, can be manipulated, thereby
modifying the deformation of the soft robot module. By displacing
the cube in a specific direction, the module can be stretched.
Similarly, bending can be achieved by moving the cube within the
plane, while twisting can be accomplished by displacing the cube
in three-dimensional space.

Fig. 4. The continuous deformation with different positions of control
points (the green cubes).

C. Sensor Fusion

A succinct sensor fusion approach is introduced in order to
accurately measure the actual deformation of various types of
modules in their natural environment. This method relies solely on
the utilization of a strain gauge (SG), a simple yet effective sensor,
see Fig.5. The operational principle of the resistance strain gauge
is predicated on the strain phenomenon, wherein the resistance
value of a conductor or semiconductor material alters proportionally
with its mechanical deformation under external forces, commonly
referred to as the ”strain effect”. By affixing the strain gauge to
the material to be measured, it flexes in accordance with the strain
experienced by the material, causing the internal metal foil to also
bend correspondingly.

Fig. 5. The sensor structure of resistance strain gauge.

1) Bending Measurement: In the theory of strain gauge (SG)
measurement, the relationship between strain and the corresponding
change in resistance can be expressed using the equation:

ε =
∆R
R

· 1
S

(7)

Here, ε represents the strain, ∆R represents the change in resistance,
R represents the initial resistance, and S represents the gauge factor.
The gauge factor, denoted as S, is a characteristic parameter of



the strain gauge that indicates the ratio of the relative change in
resistance to the applied strain.

To incorporate bending measurement using a strain gauge, the
equation can be modified to account for the bending strain. Bending
strain is a result of the curvature or deflection of the material under
external forces. The modified equation for bending strain can be
expressed as:

εb =
∆Rb

R
· 1

Sb
(8)

where εb represents the bending strain, ∆Rb denotes the change in
resistance due to bending, R signifies the initial resistance, and Sb
represents the gauge factor for bending strain.

When both bending and axial strains are present, the total strain
can be calculated as the sum of the bending strain (εb) and the axial
strain (εa):

εtotal = εb + εa (9)

Similarly, the total change in resistance (∆Rtotal) can be obtained
by adding the change in resistance due to bending (∆Rb) and the
change in resistance due to axial strain (∆Ra):

∆Rtotal = ∆Rb +∆Ra (10)

When the axial strain is imperceptible, it becomes possible to
ascertain the change in resistance, thereby enabling the assessment
of the effect of bending when the object is connected to the flexible
module. With the sensor bending, the corresponding resistance
value changed in Fig.6.

Fig. 6. The upper figure represents the measurement curve using the LCR
meter, while the lower figure illustrates the fluctuation of the strain gauge
resistance value and the voltage output value in correlation with varying
bending angles.

The strain gauge measurement theory provides a robust frame-
work for accurately assessing deformation and strain experienced by

various modules in real-world scenarios. In practical applications,
the change in measured resistance is converted into a voltage signal
V using a Wheatstone bridge circuit, as depicted in Fig.7. This
voltage signal can then be amplified and processed for further
analysis and interpretation. Different deployment layouts are uti-
lized for the various modules. In the bending module, the sensor is
positioned flatly on the bottom face, allowing it to directly reflect
the bending angle when the module deforms. In the stretch module,
the strain gauge is placed on the gap between folds, enabling it
to register changes in length. In the twisting module, the strain
gauge is positioned on the side face to correspondingly register
twists. By analyzing the output voltage of the strain gauge, the true
deformation of the different modules can be easily determined.

Fig. 7. The sensor deployment of three modules with the data collection
module.

2) Calibration: The data collected from sensors requires pro-
cessing and analysis. The first step involves calibration to establish
a correlation between the sensed values and the position of the
control point. Within each module, specific deformation statuses
are selected as points along the known trajectory. These points are
used to construct a continuous trajectory for each control point using
a Bezier curve. This is achieved through reverse calculation. Let
PT = [PT0,PT1,PT2, ...,PTn] represent the set of known trajectory
points, where n is the total number of known trajectory points.

The goal is to determine the control points C = [C0,C1,C2, ...,Cn]
that enable the generation of a Bezier curve passing through the
given trajectory points, with PT0 =C0 and PTn =Cn.

The control points C are calculated using the equation:

Ci =

(
n
i

)
·PTi (11)

where Ci represents the i-th control point, PTi denotes the i-th
known trajectory point, and

(n
i
)

represents the binomial coefficient.
Once the control points C are determined, the original Bezier

curve formula PT is used to compute the fitted trajectory points
within the given parameter T . The formula is as follows:

PT (T ) =
n

∑
i=0

(
n
i

)
· (1−T )n−i ·T i ·Ci (12)

The sensor fusion method incorporates a fitting function to
establish the relationship between the position of the control points
(TC) and a voltage signal (V ), which can be expressed by the
equation:

T = f (V ) = mV + c,T ∈ [0,1] (13)

In this work, a linear mapping is utilized, where m represents
the slope and c represents the y-intercept of the line. By mapping
the parameter V to parameter T , a smooth trajectory can be gener-
ated, with each input V corresponding to a specific deformation.
The fitted trajectory points obtained through this process serve
as a representation of a smooth trajectory passing through the
given set of trajectory points. This fitting function enables the



integration of sensors with the digital twin system, allowing for
accurate visualization of the same deformation observed in the real
world. Fig.8 illustrates a comparison between the observed physical
deformations in the soft modules and the analogous deformations
within their virtual equivalents as part of a DT framework. This
system enables users to engage in an interactive manipulation of the
soft module through AR interfaces, thereby allowing for the pre-
emptive simulation of functional behaviors prior to actual operation.
Such a feature facilitates the exploration and assessment of diverse
configurations across a spectrum of potential applications.

Fig. 8. The deformation comparison between the real soft modules and
their digital twin.

IV. CASE STUDY

This section elucidates the utilization of soft modules in configur-
ing diverse arrangements to fulfill various functionalities. Illustrated
in Fig. 9, are several assemblies of configurations achieved through
soft modules, capable of executing walking, crawling, and gripping
operations.

Fig. 9. The varied configurations facilitated by soft modules encompass:
a) walking spider, b) crawling robot, c) external gripper, and d) internal
gripper.

Subsequently, we provide a detailed discussion on the con-
struction of a gripper utilizing three foundational modules, as
illustrated in Fig. 10. The gripper is designed to perform intricate
movements involving stretching, twisting, and bending. When the
gripper undergoes deformation from pressure, a sensor collects the
deformation data and transmits it to the HoloLens 2. Consequently,
the AR-based DT system adjusts to accurately represent the actual
deformation. Furthermore, the user can manipulate the modules,
reposition them, change their posture, or add/drop modules within

the DT system via AR interaction. This enables the user to simulate
various configurations to determine the optimal setup for the soft
robot, leading to enhanced efficiency and improved development
iteration. The use of magnets to connect the modules facilitates
easy reconfiguration by the user in the physical world. The case
study demonstrates that the proposed DT system can facilitate the
reconfiguration of soft modules in both real-world and DT systems,
and enables the in-situ visualization of soft deformation within an
immersive augmented reality environment, thereby showcasing the
effectiveness and superiority of the proposed DT system.

Fig. 10. The procedure of manipulation by DT-enable RSR gripper (in the
real vision of HoloLens 2).

V. CONCLUSION

This paper introduces a novel framework for developing a
digital twin (DT) system for reconfigurable soft robots within
an augmented reality (AR) setting. The framework involves the
integration of armature-based techniques and bending sensors to
accurately capture the robots’ deformation. The approach utilizes
armature-based techniques to modify and reconstruct the digital
twin of the soft deformation in the AR environment, facilitating
smooth transitions between different deformations. The study iden-
tifies three fundamental types of deformation patterns - stretching,
bending, and twisting - and corresponding visualization patterns to
accurately represent these basic deformations. The sensor fusion
method is introduced to map the relationship between sensor data
and deformation, enabling more precise visualization and simulation
within the AR environment. Finally, a case study is conducted,
which successfully achieves reconfiguration in both the real world
and the DT, as well as in-situ smooth visualization in the AR envi-
ronment, demonstrating the effectiveness of the proposed method.
Future research may explore extending this framework to control,
manipulation, and human-robot interaction in various scenarios.
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